Suicide Prevention and Postvention Special Interest Day Tuesday 26th May 2015, Royal College of Psychiatrists, London

What works and what may not work

Keith Hawton

Preventing suicide in England

A cross-government outcomes strategy to save lives

Launched September 10th 2012 World Suicide Prevention Day

A HM Government

Suicide prevention

Population strategies

High risk group strategies

Preventing suicide in England

Areas for action

- 1. Reduce the risk of suicide in key high-risk groups
- 2. Tailor approaches to improve mental health in specific groups
- 3. Reduce access to the means of suicide
- 4. Provide better information and support to those bereaved or affected by a suicide
- 5. Support the media in delivering sensible and sensitive approaches to suicide and suicidal behaviour
- 6. Support research, data collection and monitoring

People with mental health problems under the care of psychiatric services

National Confidential Inquiry data England 2000-2010

• General population suicide deaths: 49,532

Individuals in contact with mental health services in previous 12 months: 13,390 (27%)

What works?

National policies and recommendations

Removal of ligature points on inpatient units

Safety First, 2001 12 Steps to a Safer Service

the national confidential inquiry into suicide and homicide by people with mental illness

In-patient suicide

(Kapur et al. Psychological Medicine 2012)

In-patient and post discharge suicide

(Kapur et al. Psychological Medicine 2012)

What works?

National policies and recommendations

- Removal of ligature points in inpatient units
- Assertive outreach
- 24-hour crisis team
- 7-day follow-up
- Non-compliance
- Dual diagnosis
- Criminal justice information sharing
- Multi-disciplinary review
- Training in suicide risk management

Safety First, 2001 12 Steps to a Safer Service

Questions

- Do mental health services implement policies?
- Do they make a difference?

Do policies make a difference?

(While et al. Lancet, 2012)

Implementation of mental health service recommendations in England and Wales and suicide rates, 1997-2006 (While et al., 2012)

Reduced suicide rates were associated with:

- Provision of 24-hour crisis care
- Local policies on patients with dual diagnoses
- Multidisciplinary review after suicide

Services that did not implement recommendations had little reduction in suicides

Role of medication in prevention

BMJ 2013;346:f3646 doi: 10.1136/bmj.f3646

Page 1 of 13

Lithium in the prevention of suicide in mood disorders: updated systematic review and meta-analysis

OPEN ACCESS

Andrea Cipriani *lecturer in psychiatry*¹², Keith Hawton *professor of psychiatry*², Sarah Stockton *senior information scientist*², John R Geddes *professor of epidemiological psychiatry*²

¹Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Verona, Italy; ²Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK

Lithium versus placebo: suicides

Lithium versus placebo: all deaths

Antidepressants and suicide prevention

Adolescents and young people up to 25

years: Associated with **1** in suicidal ideation (and ?behaviour)

Adults: No effect on suicidal behaviour

Older adults: Associated with 4 suicides

Risk assessment

SELF-HARM

THE NICE GUIDELINE ON LONGER-TERM MANAGEMENT

COLLABORATING CENTRE FOR MENTAL HEALTH

Services and aftercare for self-harm patients

- Services for self-harm patients in all general hospitals
- All staff should be properly trained and supervised
- All self-harm patients should receive psychosocial assessment (including of needs and risk)
- Do not use risk assessment tools and scales to predict future suicide or repetition of self-harm
- Do not use risk assessment tools and scales to determine who should and should not be offered treatment or who should be discharged

The sad truth about the SADPERSONS Scale: an evaluation of its clinical utility in self-harm patients

Kate Saunders,¹ Fiona Brand,² Karen Lascelles,² Keith Hawton¹

ABSTRACT

Background The SADPERSONS Scale is commonly used as a screening tool for suicide risk in those who have self-harmed. It is also used to determine psychiatric treatment needs in those presenting to emergency departments. To date, there have been relatively few studies exploring the utility of SADPERSONS in this context.

Objectives To determine whether the SADPERSONS Scale accurately predicts psychiatric hospital admission, psychiatric aftercare and repetition of self-harm at presentation to the emergency department following self-harm.

Methods SADPERSONS scores were recorded for 126 consecutive admissions to a general hospital emergency department. Clinical management outcomes following assessment were recorded, including psychiatric hospital admission, community psychiatric aftercare and repetition of self-harm in the following 6 months.

Results Psychiatric hospital admission was required in five cases (4.0%) and community psychiatric aftercare in 70 (55.5%). 31 patients (24.6%) repeated self-harm. While the specificity of the SADPERSONS scores was greater than 90% for all outcomes, sensitivity for admission was only 2.0%, for community aftercare was 5.8% and for repetition of self-harm in the following 6 months was just 6.6%.

Conclusions For the purposes of suicide prevention, a low false negative rate is essential. SADPERSONS failed to identify the majority of those either requiring psychiatric admission or community psychiatric aftercare, or to predict repetition of self-harm. The scale should not be used to screen self-harm patients presenting to general hospitals. Greater emphasis should be placed on dinical assessment which takes account of the individual and dynamic nature of risk assessment.

University Department of Psychiatry, Warneford Hospital, Oxford, UK ²Deliberate Self-Harm and Psychiatric Liaison Service, Barnes Unit, Oxford Health NHS Foundation Trust, The John Radcliffe Hospital, Oxford, UK

¹Centre for Suicide Research.

Correspondence to

Professor K Hawton, Centre for Suicide Research, University Department of Psychiatry, Wameford Hospital, Oxford OX3 7JX, UK; keith.hawton@psych.ox.ac.uk

Received 25 April 2013 Revised 10 June 2013 Accepted 11 June 2013

SADPERSONS

A scale developed in 1983 by Patterson et al in Canada for teaching medical students about assessment of suicide risk

Based on the 10 major risk factors for suicide:

- Sex (Male)
- Age (<19 or >45)
- Depression
- Previous attempts
- Ethanol abuse
- Rational thinking loss
- Social supports lacking
- Organised plan
- No spouse
- Sickness

SADPERSONS

Scoring:

1 point for each factor

- $\mathbf{0} = \text{very low risk}$ $\mathbf{10} = \text{very high risk}$
- 0–2 send home with follow up

3-4 – close follow up; consider hospitalisation

5-6 - strongly consider hospitalisation7-10 - hospitalise

Outcomes

	SADPERSONS score < 7	SADPERSONS score ≥7
Referral to secondary	GE (04 20/)	A (E 90/)
care (N=69)	65 (94.2%)	4 (5.8%)
Psychiatric inpatient	4 (0.00/)	1 (2004)
care (N=5)	4 (80%)	1 (20%)
Repetition of self-		
harm at 6 months	28 (93.3%)	2 (6.7%)
(N=30)		

Put another way.....

SADPERSONS missed:

- ▶ 65/70 referrals to 2° care
- 4/5 admissions to psychiatric hospital
- > 28/31 who repeated SH @6/12

Focus on risk reduction rather than just risk assessment

- Risk prediction probably only valid in short term
- Risk reduction for all patients e.g.
 - crisis plans
 - involvement of family members etc.
 - restriction of access to means for suicidal act

Restriction of access to suicide methods

Simplistic model of some causes of fatal and non-fatal suicidal behaviour

Restriction of Access to Suicide Methods What works?

Smaller packs of paracetamol

The new UK legislation – September 16th, 1998 (paracetamol, salicylates and their compounds sold over the counter)

Suicide and open verdict deaths involving paracetamol in people aged 10 years and over in England and Wales

(Hawton et al. 2013)

Deaths involving paracetamol October 1998-2009

Restriction of Access to Suicide Methods What works?

Smaller packs of paracetamol

Withdrawal of co-proxamol

Co-proxamol

- Was involved in 20% of all poisoning suicides in UK
- 5% of all suicides
- 2003–2004 Medicines and Healthcare products Regulatory Agency (MHRA) reviews efficacy and safety profile
- 2005 (January) Committee on Safety of Medicines announces withdrawal in UK
 - 2005-2007 No new patients to be prescribed coproxamol
 - 2008 Full withdrawal
Impact of withdrawal of co-proxamol on suicide deaths involving analgesics in England and Wales 1998-2010

Deaths involving co-proxamol 2005-2010

No significant change in deaths involving other analgesics

Restriction of Access to Suicide Methods What works?

Smaller packs of paracetamol

Withdrawal of co-proxamol

Suicide barriers

The Clifton Suspension Bridge

Barriers on the Clifton Suspension Bridge

MENTAL HEALTH

The effectiveness of structural interventions at suicide hotspots: a meta-analysis

Jane Pirkis,¹* Matthew J Spittal,¹ Georgina Cox,² Jo Robinson,² Yee Tak Derek Cheung¹ and David Studdert^{1,3}

¹Centre for Health Policy, Programs and Economics, Melbourne School of Population Health, University of Melbourne, Melbourne, Australia, ²Orygen Youth Health Research Centre, Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia and ³Melbourne Law School, University of Melbourne, Melbourne, Australia

*Corresponding author. Centre for Health Policy, Programs and Economics, Melbourne School of Population Health, University of Melbourne, Melbourne, Victoria 3010, Australia. E-mail: j.pirkis@unimelb.edu.au

Accepted 28 January 2013

Background Certain sites have gained notoriety as 'hotspots' for suicide by jumping. Structural interventions (e.g. barriers and safety nets) have been installed at some of these sites. Individual studies examining the effectiveness of these interventions have been underpowered.

Structural Interventions at Suicide Hotspots; Systematic review Pirkis et al., 2013)

- 9 studies
- 86% reduction in jumping suicides at hotspots
- 44% increase in suicides at nearby sites

Net gain 28% reduction in all jumping sites in study cities

Self-harm patients

Repetition of self-harm and suicide in self-harm patients

- > 20% repeat within a year (return to same hospital)
- One in 25 will die by suicide in year after self-harm (>50 x general population risk)
- >50% of people dying by suicide have history of selfharm, 15% presenting to hospital for self-harm in year before death

Assessment at the hospital

National Collaborating Centre for Mental Health

Self-harm

The short-term physical and psychological management and secondary prevention of self-harm in primary and secondary care

ASKE

SELF-HARM

THE NICE GUIDELINE ON LONGER-TERM MANAGEMENT

COLLABORATING CENTRE FOR MENTAL HEALTH

Services and aftercare for self-harm patients

- Services for self-harm patients in all general hospitals
- All staff should be properly trained and supervised
- All self-harm patients should receive psychosocial assessment (including of needs and risk)
- Do not use risk assessment tools and scales to predict future suicide or repetition of self-harm
- Do not use risk assessment tools and scales to determine who should and should not be offered treatment or who should be discharged

Does psychosocial assessment reduce repetition of self-harm? Multicentre Study of Self-harm in England

(Kapur et al., PLoS One, 2013)

Hazard ratios for repetition within 1 year (all adjusted)

	Centre A	Centre B	Centre C	
Psychosocial assessment	0.99 (0.90 to 1.09)	0.59 (0.48 to 0.74)	0.59 (0.52 to 0.68)	

Care after leaving hospital

Self-harm The efficacy of psychosocial and pharmacological interventions

Keith Hawton, Katrina Witt, Tatiana Taylor, Ella Arensman, Ellen Townsend, David Gunnell, Philip Hazel, Kees van Heeringen

(Cochrane Collaboration)

Psychological therapy V Treatment as usual

17 studies

Repetition of SH at last follow-up

	Treatm	nent	Control			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Brown 2005	13	45	23	40	5.9%	0.30 [0.12, 0.74]	
Davidson 2014	4	10	4	4	0.5%	0.08 [0.00, 1.81]	←
Dubois 1999	8	43	10	41	4.5%	0.71 [0.25, 2.02]	
Evans 1999b	10	18	10	14	2.4%	0.50 [0.11, 2.21]	
Gibbons 1978	27	200	29	200	12.6%	0.92 [0.52, 1.62]	
Guthrie 2001	5	58	17	61	4.3%	0.24 [0.08, 0.71]	
Hatcher 2011	36	253	51	299	16.6%	0.81 [0.51, 1.28]	
Hawton 1987	3	41	6	39	2.4%	0.43 [0.10, 1.87]	
Husain 2014	1	102	1	111	0.7%	1.09 [0.07, 17.64]	
McAuliffe 2014	54	222	50	211	17.7%	1.03 [0.67, 1.61]	_ +
Salkovskis 1990	3	12	4	8	1.5%	0.33 [0.05, 2.24]	
Slee 2008	26	40	21	33	5.3%	1.06 [0.41, 2.78]	
Stewart 2009	3	23	2	9	1.4%	0.53 [0.07, 3.82]	
Tapolaa 2010	2	9	4	7	1.1%	0.21 [0.02, 1.88]	•
Tyrer 2003	84	213	99	217	21.0%	0.78 [0.53, 1.14]	+
Wei 2013	1	25	5	27	1.1%	0.18 [0.02, 1.69]	•
Weinberg 2006	12	15	14	15	0.9%	0.29 [0.03, 3.12]	•
Total (95% CI)		1329		1336	100.0%	0.70 [0.55, 0.88]	•
Total events	292		350				
Heterogeneity: Tau ² =	0.03; Ch	i ^z = 18.9	50, df = 1	6 (P = 0).30); I ² = 1	14%	
Test for overall effect:	Z = 3.02 ((P = 0.0	03)				Favours treatment Favours control

Depression scores at last follow-up

	Treatment Cont				Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Brown 2005	14.51	12.9	45	18.18	13.75	40	7.6%	-0.27 [-0.70, 0.15]	
Davidson 2014	9.27	5.73	11	16.75	1.5	4	1.6%	-1.39 [-2.67, -0.10]	←────
Evans 1999b	5.7	5.5	18	10.1	4.1	14	3.9%	-0.87 [-1.60, -0.13]	←
Gibbons 1978	10.57	11.39	69	12.62	10.95	71	9.4%	-0.18 [-0.51, 0.15]	
Guthrie 2001	18.5	13.5	47	24	12.5	48	8.0%	-0.42 [-0.83, -0.01]	
Hatcher 2011	5.3	4.7	190	6.2	4.8	232	12.3%	-0.19 [-0.38, 0.00]	
Hawton 1987	6.5	8.26	30	9.6	10.96	35	6.6%	-0.31 [-0.80, 0.18]	
Husain 2014	14.8	17.3	102	19.4	16.9	111	10.7%	-0.27 [-0.54, 0.00]	
McAuliffe 2014	17.3	15.9	128	19.4	17	106	11.0%	-0.13 [-0.39, 0.13]	
Salkovskis 1990	15	6.16	12	23	6.16	8	2.4%	-1.24 [-2.24, -0.25]	•
Slee 2008	11.58	12.12	40	29.61	17.51	33	6.4%	-1.21 [-1.71, -0.70]	+
Tapolaa 2010	25	13.57	6	24.71	11.87	7	2.1%	0.02 [-1.07, 1.11]	
Tyrer 2003	7	5.3	198	7.1	5.2	202	12.3%	-0.02 [-0.22, 0.18]	
Wei 2013	7.26	10.58	25	5.84	8.23	27	5.8%	0.15 [-0.40, 0.69]	
Total (95% CI)			921			938	100.0%	-0.31 [-0.48, -0.14]	•
Heterogeneity: Tau ² =	0.05; C	hi² = 32.	89, df=	= 13 (P =	= 0.002)	; i² = 60)%		
Test for overall effect:	•		-1 -0.5 Ó 0.5 1 Favours treatment Favours control						

Hopelessness scores at last follow-up

	Tre	reatment Control						Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
Brown 2005	6.07	5.28	45	7.24	6.35	40	14.1%	-0.20 [-0.63, 0.23]	
Hatcher 2011	5.8	5.8	189	7.2	6.4	229	27.9%	-0.23 [-0.42, -0.03]	
Husain 2014	7.5	8.8	102	11.2	9.1	111	22.4%	-0.41 [-0.68, -0.14]	
McAuliffe 2014	6.8	6.3	128	7.1	6.1	106	23.4%	-0.05 [-0.31, 0.21]	
Patsiokas 1985	3.3	2.34	10	9	7.8	5	2.8%	-1.13 [-2.30, 0.04]	
Salkovskis 1990	6.75	2.3	12	10	2.3	8	3.7%	-1.35 [-2.36, -0.34]	
Stewart 2009	4.35	4.22	23	7.56	8.53	9	5.7%	-0.55 [-1.33, 0.23]	
Total (95% CI)			509			508	100.0%	-0.31 [-0.51, -0.10]	•
Heterogeneity: Tau² = Test for overall effect:			-2 -1 0 1 2 Favours treatment Favours control						

Suicidal ideation scores at last follow-up

	Ехр	eriment	al	0	Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Davidson 2014	12.36	12.48	11	26.5	1.92	4	2.1%	-1.21 [-2.46, 0.04]	←
Guthrie 2001	8.3	8.6	47	12.1	10.4	48	13.5%	-0.39 [-0.80, 0.01]	
Hatcher 2011	3.7	6.7	187	4.8	7.4	231	26.4%	-0.15 [-0.35, 0.04]	
Husain 2014	7.8	10.7	102	11.3	10.4	111	20.8%	-0.33 [-0.60, -0.06]	_
McAuliffe 2014	4.7	8.9	171	4.9	8.9	142	24.2%	-0.02 [-0.24, 0.20]	
Patsiokas 1985	5.1	5.29	10	8.6	9.2	5	2.7%	-0.49 [-1.58, 0.60]	·
Stewart 2009	1.91	4.07	23	10.11	12.67	9	4.6%	-1.08 [-1.90, -0.26]	←
Weinberg 2006	37.96	18.68	15	45.69	14.38	15	5.6%	-0.45 [-1.18, 0.27]	
Total (95% CI)			566			565	100.0%	-0.28 [-0.47, -0.09]	•
Heterogeneity: Tau ² =	= 0.02; C	hi ^z = 12.	04, df :						
Test for overall effect:	: Z = 2.95	(P = 0.1	003)						-1 -0.5 0 0.5 1 Favours [experimental] Favours [control]

Suicide at last follow-up

	Treatm	ent	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Brown 2005	0	60	1	60	6.6%	0.33 [0.01, 8.21]	
Davidson 2014	1	10	0	4	6.0%	1.42 [0.05, 42.22]	
Dubois 1999	0	51	0	51		Not estimable	
Guthrie 2001	0	58	0	61		Not estimable	
Hatcher 2011	3	253	4	299	30.2%	0.89 [0.20, 3.99]	
Hawton 1987	1	41	0	39	6.6%	2.93 [0.12, 74.00]	
Husain 2014	2	102	2	111	17.5%	1.09 [0.15, 7.88]	
McAuliffe 2014	1	222	2	211	11.8%	0.47 [0.04, 5.25]	
Salkovskis 1990	0	12	0	8		Not estimable	
Slee 2008	0	48	1	42	6.6%	0.29 [0.01, 7.19]	
Stewart 2009	0	23	0	9		Not estimable	
Tapolaa 2010	0	9	0	7		Not estimable	
Tyrer 2003	1	239	5	241	14.8%	0.20 [0.02, 1.71]	
Wei 2013	0	26	0	27		Not estimable	
Weinberg 2006	0	15	0	15		Not estimable	
Total (95% CI)		1169		1185	100.0%	0.66 [0.29, 1.51]	•
Total events	9		15				
Heterogeneity: Tau² =	0.00; Chi	i ^z = 3.13	3, df = 7 (P = 0.8	7); I ² = 0%	6	0.001 0.1 1 10 1000
Test for overall effect:	Z = 0.98 ((P = 0.3	3)				
. set for oronal offoot.	- 0.00,	. 0.0	-,				Favours treatment Favours control

Services and aftercare for self-harm patients

- Services for self-harm patients in all general hospitals
- All staff should be properly trained and supervised
- All self-harm patients should receive psychosocial assessment (including of needs and risk)
- Do not use risk assessment tools and scales to predict future suicide or repetition of self-harm
- Do not use risk assessment tools and scales to determine who should and should not be offered treatment or who should be discharged
- Psychological therapy can be effective in reducing risk of repetition of self-harm

Suicide Prevention and Postvention Special Interest Day Tuesday 26th May 2015, Royal College of Psychiatrists, London

What works and what may not work

Keith Hawton

